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Abstract
We begin by deriving explicit formulae for the energy levels of a system of N
harmonic oscillators for two special mass configurations but for arbitrary N.
Under the same conditions, we can perform analytically all the calculational
procedure leading to an optimized lower bound for the ground state energy of an
N-body system. The lower bound obtained in this way proves to be identical to
the exact result. It is the first time, to our knowledge, that an explicit analytical
proof of saturability has been worked out.

PACS number: 03.65.−w

1. Introduction

N-body problems constitute a challenge. Even the most simple of them, that is the one-
body problem in a central potential or the two-body problem in the case of a translationally
and rotationally invariant potential, are exactly solvable only in a very limited number of
cases. The complexity of the N-body problem increases quickly with N. One alternative
to overcome the non-analytic solvability is to have recourse to numerical investigations.
Again these numerical computations complicate rapidly with N requiring thereby considerable
calculational facilities. A second alternative is to focus on exact results. Among these, exact
lower bounds for N-body Hamiltonians occupy a particular place. Recently we have derived
an optimized lower bound for the ground state energies of N-body systems, with arbitrary
N. Before going further, it is worthwhile emphasizing that the whole procedure applies only
to systems of N particles interacting via translationally invariant two-body forces in the
context of nonrelativistic kinematics. In particular three-body forces cannot be included in
our present scheme. The lower bound we have obtained seems to be very promising. Indeed

1 Also at Centre Universitaire de Khenchela, Algérie.
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our investigations [1] show the superiority of this lower bound over earlier derived naive
[2–7] and improved [8–10] lower bounds, and the saturability in the harmonic oscillator case
[11, 12], which means that the optimized lower bound becomes equal to the exact result in
the case of a system of N harmonic oscillators. But there is a small problem from the point
of view of mathematical rigour. Although the saturability has been checked out numerically
in all configurations considered, this does not constitute a rigorous proof of saturability. Our
goal in this paper is to fill, partially, this lack. We will analytically prove in the following
that the optimized lower bound we have obtained is saturated in the case of a system of N
harmonic oscillators for two particular mass configurations, but with arbitrary N. We will
begin by recalling quickly the derivation of this optimized lower bound. Then we will return
to our primary concern in this paper. We will consider in turn two special configurations,
where in each case we will establish the expressions of the exact energy levels of the system
of N harmonic oscillators, together with the explicit exact expression of the optimized lower
bound. Comparing the two expressions leads to the announced result, i.e., the saturability of
the optimized lower bound for two special mass configurations, but for arbitrary N.

2. Optimized lower bound

We will be very brief here since the details of the derivation of the optimized lower bound
can be found elsewhere. Let us consider N-body systems with nonrelativistic kinematics and
translationally invariant two-body forces, i.e., systems described by Hamiltonians of the form

H =
N∑

i=1

1

2mi

p2
i +

N∑
i<j=1

V (ij)(rij ), (1)

where mi, ri , pi stand respectively for the mass, the position and the momentum of the ith
particle. rij := ri −rj , i �= j = 1, 2, . . . , N . It will be noted that the two-body force is given
by the pair potential V (ij). Our procedure [12] extends to N-body systems, with arbitrary
N, optimized lower bounds obtained in the past for the three-body [13] and the four-body
[14–17] cases, and very recently for the five-body case [11]. Our starting point has been the
decomposition

N∑
i=1

1

2mi

p2
i =

 N∑
j=1

bjpj

 (
N∑

i=1

pi

)
+

N∑
i<j=1

aijp
2
ij (2)

of the kinetic part of the Hamiltonian involving the parameters bj , j = 1, . . . , N , and the
necessary positive parameters aij , i < j = 1, 2, . . . , N. pij is a linear combination of the
various momenta pk ,

pij =
N∑

k=1

xij,k

2
pk. (3)

Here the factor one-half is introduced for convenience. The coefficients xij,k entering the
linear combination are chosen such that rij and pij are conjugate variables of one another, that
is satisfying canonical commutation relations

[rij,k, pij,�] = ih̄δk,�, k, � = 1, 2, 3, (4)

where rij,k and pij,� stand respectively for the kth component of rij and the �th component of
pij . Replacing the momenta pij by their expressions, (3), (2) can be rewritten as

N∑
i=1

1

2mi

p2
i =

 N∑
j=1

bjpj

 (
N∑

i=1

pi

)
+

N∑
i<j=1

aij

4

(
N∑

k=1

xij,kpk

)2

. (5)
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It will be remarked that the parameters bj , aij and xij,k are constrained by relations obtained by
identifying the two sides of (5). More precisely, the identification of the left-hand side of (5)
with its right-hand side provides N + N(N − 1)/2 constraints. If one remarks that the number
of bj is N and the number of aij is N(N − 1)/2, these constraints may be used to eliminate
bj and aij in favour of xij,k . From now on bj and aij are considered as implicit functions of
xij,k . We may without loss of generality take xij,i to be equal to 1 by a redefinition of aij

and of xij,k for k �= i = 1, 2, . . . , N . Then imposing the canonical commutation relations,
(4), one ends with xij,j = −1. Thus, we are left with N(N − 1)(N − 2)/2 parameters xij,k .
The decomposition of the Hamiltonian, (1), corresponding to the decomposition of the kinetic
energy term, (5), is

H =
 N∑

j=1

bjpj

 (
N∑

i=1

pi

)
+

N∑
i<j=1

aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij )

 . (6)

Let |�〉 be the normalized ground state of the system and E the corresponding energy. We
have

E = 〈�|H |�〉

= 〈�|
 N∑

j=1

bjpj

 (
N∑

i=1

pi

)
|�〉 +

N∑
i<j=1

〈�|
aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij )

 |�〉. (7)

Since the ground state |�〉 is invariant under translation, then(
N∑

i=1

pi

)
|�〉 = , (8)

and thus the contribution of the first term on the right-hand side of (7) vanishes. It results that

E =
N∑

i<j=1

〈�|
aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij )

 |�〉. (9)

But by virtue of the variational principle

〈�|
aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij )

 |�〉 � E
(2)
ij [aij (xk�,m)], (10)

where E
(2)
ij [aij (xk�,m)] stands for the ground state energy of the two-particle Hamiltonian

H
(2)
ij [aij (xk�,m)] = aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij ). (11)

It follows that

E �
N∑

i<j=1

E
(2)
ij [aij (xk�,m)]. (12)

Thus one obtains a family of lower bounds for E, a lower bound

N∑
i<j=1

E
(2)
ij [aij (xk�,m)],
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for each set of values of the parameters xk�,m. The best of these bounds, denoted by Eolb,
corresponds obviously to those values of xk�,m which maximize

∑N
i<j=1 E

(2)
ij [aij (xk�,m)]. Thus

Eolb = max
xk�,m

N∑
i<j=1

E
(2)
ij [aij (xk�,m)]. (13)

Eolb is called optimized lower bound.
When

∑N
i<j=1 E

(2)
ij [aij (xk�,m)] reaches its maximum with respect to xk�,m, all the

derivatives with respect to xk�,m must vanish, that is

N∑
i<j=1

∂E
(2)
ij

∂aij

∂aij

∂xk�,m

= 0, m �= k, m �= �, k < l = 1, 2, . . . , N. (14)

Since ∂E
(2)
ij

/
∂aij are not all zero, the rectangular matrix B̃ with N(N − 1)/2 lines and

N(N − 1)(N − 2)/2 columns with matrix elements ∂E
(2)
ij

/
∂ak�,m, where ij and k�,m

correspond respectively to the line and column indices, must be at most of rank N(N−1)/2−1.
This means that every N(N − 1)/2 × N(N − 1)/2 square matrix extracted from the matrix
B̃, by selecting N(N − 1)/2 of its columns, must be of determinant zero. This results in
N(N − 1)(N − 2)/2 − N(N − 1)/2 + 1 relations among the values of xk�,m at the maximum.
The general methodology for obtaining these relations can be found in [12] and their explicit
forms for the three-body, four-body and five-body cases are given respectively in [13], [14]
and [11]. Let us now consider in turn the two special configurations ((N − 1) × m,M),
i.e., an N-body system with N − 1 particles with the same mass m and a particle with mass
M,m �= M , and (n × m, n′ × M), i.e., an N-body system with n particles with the same
mass m and n′ particles with the same mass M, with m �= M and n + n′ = N . We will work
in the hypothesis where the two-body potential depends only on the masses of the particles
constituting the pair.

3. Configurations ((N − 1) × m, M )

One can always, without loss of generality, number the N − 1 particles with the same mass m
from 1 to N − 1, and the single particle with mass M by N, that is

m1 = m2 = · · · = mN−1 = m, mN = M.

3.1. Energy levels of the system of N harmonic oscillators

To solve the system of N harmonic oscillators, we have to first introduce a set of Jacobi
coordinates and the corresponding conjugate momenta, together with the centre of mass
coordinate and its conjugate momentum, i.e., the total momentum. We then express the
Hamiltonian, (1), in terms of these new coordinates and their conjugate momenta. Subtracting
the centre of mass kinetic energy, i.e., separating the centre of mass motion, one ends with the
relative Hamiltonian.

A natural choice of the Jacobi coordinates is the following:

ρ1 = −r2 + r1,

ρ2 = −r3 +
1

2
(r1 + r2),

...
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ρi = −ri+1 +
1

i
(r1 + r2 + · · · + ri ),

...

ρN−2 = −rN−1 +
1

N − 2
(r1 + · · · + rN−1),

ρN−1 = −rN +
1

N − 1
(r1 + · · · + rN).

(15)

One can express the individual coordinates of the particles in terms of the Jacobi coordinates,
(15), and the centre of mass coordinate R defined as

R = m(r1 + · · · + rN−1) + MrN

(N − 1)m + M
. (16)

The result is

r1 = 1

2
ρ1 +

1

3
ρ2 +

1

4
ρ3 + · · · +

1

N − 1
ρN−2 +

M

(N − 1)m + M
ρN−1 + R,

r2 = −1

2
ρ1 +

1

3
ρ2 +

1

4
ρ3 + · · · +

1

N − 1
ρN−2 +

M

(N − 1)m + M
ρN−1 + R,

r3 = −2

3
ρ2 +

1

4
ρ3 + · · · +

1

N − 1
ρN−2 +

M

(N − 1)m + M
ρN−1 + R,

...

ri = − i − 1

i
ρi−1 +

1

i + 1
ρi + · · · +

1

N − 1
ρN−2 +

M

(N − 1)m + M
ρN−1 + R, (17)

...

rN−2 = −N − 3

N − 2
ρN−3 +

1

N − 1
ρN−2 +

1

N − 1
ρN−2 +

M

(N − 1)m + M
ρN−1 + R,

rN−1 = −N − 2

N − 1
ρN−2 +

M

(N − 1)m + M
ρN−1 + R,

rN = − (N − 1)m

(N − 1)m + M
ρN−1 + R.

The potential energy V ,

V = λmm

N−1∑
i<j=1

(ri − rj )
2 + λmM

N−1∑
i=1

(ri − rN)2, (18)

can be put in the form

V = ((N − 2)λmm + λmM)

N−1∑
i=1

r2
i + λmM(N − 1)r2

N − 2λmm

N−1∑
i<j=1

ri · rj − 2λmM

N−1∑
i=1

ri · rN .

(19)

Replacing ri by their expressions, one gets

N−1∑
i=1

r2
i =

N−2∑
i=1

i

i + 1
ρ2

i +
(N − 1)M2

((N − 1)m + M)2
ρ2

N−1 + (N − 1)R2 + 2
(N − 1)M

(N − 1)m + M
ρN−1 · R,

(20)
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r2
N = (N − 1)m2

((N − 1)m + M)2
ρ2

N−1 + R2 − 2
(N − 1)m

(N − 1)m + M
ρN−1 · R, (21)

N−1∑
i<j=1

ri · rj = −1

2

N−2∑
i=1

i

i + 1
ρ2

i +
1

2

(N − 1)(N − 2)M2

((N − 1)m + M)2
ρ2

N−1

+
1

2
(N − 1)(N − 2)R2 +

(N − 1)(N − 2)M

(N − 1)m + M
ρN−1 · R, (22)

N−1∑
i=1

ri · rN = − (N − 1)2Mm

((N − 1)m + M)2
ρ2

N−1 + (N − 1)R2 +
(N − 1)M − (N − 1)2m

(N − 1)m + M
ρN−1 · R.

(23)

Putting all together, one obtains

V = ((N − 1)λmm + λmM)

N−2∑
i=1

i

i + 1
ρ2

i + λmM(N − 1)ρ2
N−1. (24)

The momenta conjugate to Jacobi coordinates, (15), are

pρ1 = 1

2
(−p2 + p1),

pρ2 = 2

3

(
−p3 +

1

2
(p1 + p2)

)
,

...

pρi
= i

i + 1

(
−pi+1 +

1

i
(p1 + · · · + pi )

)
, (25)

...

pρN−2 = N − 2

N − 1

(
−pN−1 +

1

N − 2
(p1 + p2 + · · · + pN−2)

)
,

pρN−1 = − (N − 1)m

(N − 1)m + M
pN +

M

(N − 1)m + M
(p1 + p2 + · · · + pN−1).

Equation (25), together with the expression of the centre of mass momentum, i.e., that of the
total momentum P ,

P = p1 + p2 + · · · + pN−1 + pN, (26)

may be inverted to get the expressions of the individual momenta in terms of the Jacobi
momenta, (25), and the centre of mass momentum, (26), which when inserted in the kinetic
part of the Hamiltonian gives

T :=
N∑

i=1

1

2mi

p2
i = P 2

2((N − 1)m + M)
+

N−2∑
i=1

p2
ρi

2im
i+1

+
p2

ρN−1

2(N−1)mM

(N−1)m+M

. (27)

Thus the Hamiltonian, (1), may be written in terms of the Jacobi coordinates, (15), their
conjugate momenta, (25), and the centre of mass momentum, (26), as

H = 1

2((N − 1)m + M)
P 2

R +
N−2∑
i=1

(
1

2im
i+1

p2
ρi

+ ((N − 1)λmm + λmM)
i

i + 1
ρ2

i

)

+
1

2(N−1)mM

(N−1)m+M

p2
ρN−1

+ λmM(N − 1)ρ2
N−1. (28)



An analytical proof of saturability of an optimized lower bound 5863

From (28), one deduces the Hamiltonian of relative motion HR by subtracting the centre of
mass kinetic energy. This results in

HR =
N−2∑
i=1

(
1

2im
i+1

p2
ρi

+ ((N − 1)λmm + λmM)
i

i + 1
ρ2

i

)
+

1
2(N−1)mM

(N−1)m+M

p2
ρN−1

+ λmM(N − 1)ρ2
N−1.

(29)

HR thus shows as a sum of N − 1 independent harmonic oscillators. Then the energy levels
are sums of the energy levels of the N − 1 harmonic oscillators.

Ej1,j2,...,jN−1 =
N−2∑
i=1

(2ji + 3)

√
(N − 1)λmm + λmM

2m
+ (2jN−1 + 3)

√
λmM((N − 1)m + M)

2mM
,

(30)

where j1, j2, . . . , jN−1 are natural integers. The ground state energy E corresponds to
j1 = 0, j2 = 0, . . . , jN−1 = 0

E = 3(N − 2)

√
(N − 1)λmm + λmM

2m
+ 3

√
((N − 1)m + M)λmM

2mM
. (31)

3.2. Optimized lower bounds

Under the conditions specified above, the system is invariant under any permutation of the
N − 1 particles with the same mass m. This results in the following relations:

aij = amm i < j = 1, 2, . . . , N − 1,

aiN = amM i < N,
(32)

b1 = b2 = · · · = bN−1 = b, (33)

and
xij,k = 0 i < j < N, k �= i, k �= j,

xiN,k = � i < N, k �= i, k �= N.
(34)

We thus have only one variational parameter � to adjust and two distinct values amm and amM

for aij .
The N + N(N − 1)/2 relations obtained by identifying both sides of (5) reduce here to

four relations, namely

b +
N − 2

4
amm +

1

4
amM +

N − 2

4
�2amM = 1

2m
,

bN +
N − 1

4
amM = 1

2M
,

2b − 1

2
amm + �amM +

N − 3

2
�2amM = 0,

b + bN − 1

2
amM − N − 2

2
�amM = 0.

(35)

Equation (35) may be considered as a system of linear equations with four unknowns
amm, amM, b, bN and one parameter �. The resolution of this system is trivial and gives
for amm and amM the following expressions in terms of the parameter �:

amm(�) = 2
(� + 1)(�N − 3� + 1 + N)M − (� − 1)2m

(�N + N − 2�)2mM
,

amM(�) = 2
(N − 1)m + M

(�N + N − 2�)2mM
.

(36)
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For a harmonic oscillator problem

Vij (rij ) = Vmm(rij ) = λmmr2
ij i < j < N,

ViN(riN ) = VmM(riN ) = λmMr2
iN i < N.

(37)

Then, if we define E(�) as

E(�) := (N − 1)(N − 2)

2
E(2)[amm(�), λmm, 2] + (N − 1)E(2)[amM(�), λmM, 2], (38)

where E(2)[a, λ, 2], with λ positive, denotes the ground state energy of the two-body harmonic
oscillator Hamiltonian H

(2)
ho defined by

H
(2)
ho := ap2 + λr2, (39)

the optimized lower bound Eolb, (13), reads

Eolb = max
�

E(�). (40)

Making use of the result, [18], which simply follows from the observation that the well-known
expression 3ω/2 (in units where h̄ = 1 of course) for the ground state energy of the three-
dimensional isotropic harmonic oscillator written in its familiar form p2/2m + mω2r2/2 is
nothing but three times the square root of the product of the two factors in front of p2 and
r2, 1/2m and mω2/2 respectively,

E(2)[a, λ, 2] = 3
√

aλ, (41)

(38) simplifies to

E(�) = 3
(N − 1)(N − 2)

2

√
λmm

√
amm(�) + 3(N − 1)

√
λmM

√
amM(�). (42)

Before going further, it is more convenient to put amm(�) and amM(�), (36), in a slightly
different form

amm(�) = 2

(N − 1)m
+

2(� − 1)2((N − 1)m + M)

(N − � + (N − 1)�)2(N − 1)mM
,

amM(�) = 4

(N − � + (N − 1)�)2

(N − 1)m + M

2mM
.

(43)

It is also convenient to make the following change of variable:

h := (N − 2)(1 − �)

(2 − N)(1 − �) + 2(N − 1)
. (44)

In terms of the new parameter h, (44), amm and amM read

amm(h) = 2

(N − 1)m
− 2((N − 1)m + M)

(N − 2)2(N − 1)mM
h2, (45)

amM(h) = ((N − 1)m + M)

2mM(N − 1)2
(1 + h)2, (46)

and the optimized lower bound Eolb reads

Eolb = max
h

E(h), (47)

where

E(h) = 3(N − 1)

(
(N − 2)

2

√
λmm

√
2

(N − 1)m
− 2((N − 1)m + M)

(N − 2)2(N − 1)mM
h2

+
√

λmM

√
(N − 1)m + M

2mM(N − 1)2

√
(1 + h)2

)
. (48)
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Let us conjecture that 1 + h is positive, when E(h) reaches its maximum. Then, in the
neighbourhood of the maximum,

∂E(h)

∂h
= 3(N − 1)

−
√

λmm

(N − 1)m + M

(N − 2)(N − 1)mM

h√
2

(N−1)m
− 2((N−1)m+M)h2

(N−2)2(N−1)mM

+
√

λmM

√
(N − 1)m + M

2mM(N − 1)2

 . (49)

Putting ∂E(h)/∂h, (49), to zero, one gets the value h0 of h corresponding to the optimized
lower bound,

h0 = (N − 1)

√
M

(N − 1)m + M

√
λmM

(N − 1)λmm + λmM

. (50)

Substituting h0, (50), in E(h), (48), one gets for the optimized lower bound, Eolb, the following
expression:

Eolb = E(h0) = 3√
2

{
(N − 2)

√
(N − 1)λmm + λmM

m
+

√
λmM

m

√
(N − 1)m + M

M

}
, (51)

which is identical to the ground state energy of the system of N harmonic oscillators, (31).
Thus the optimized lower bound, Eolb, (51), is saturated for harmonic forces.

4. Configuration (n × m, n′ × M )

Here both n and n′ are greater than 1, which means that the system is at least a four-body
system. We can always number the n particles with the same mass m as 1, . . . , n and the
remaining n′ particles with the same mass M as n + 1, . . . , N . Of course n + n′ = N .

m1 = m2 = · · · = mn = m;
mn+1 = mn+2 = · · · = mN = M.

(52)

As in the previous section, we begin by deriving the explicit expression of the exact energy
levels of the system of N harmonic oscillators and then that of the optimized lower bound.

4.1. Energy levels of the system of N harmonic oscillators

As in section 3.1, we begin by introducing a set of N − 1 Jacobi coordinates. Here, a natural
choice of the Jacobi coordinates is to consider relative coordinates inside the cluster of the n
particles with the same mass m, relative coordinates inside the cluster of the n′ particles with
the same mass M, and the relative coordinate between the two clusters. To be more explicit, a
natural choice of the Jacobi coordinates in the case of the special configuration (n×m, n′×M)

is the following:

ρi = −ri+1 +
1

i

i∑
k=1

rk 1 � i < n,

ρn = 1

n

n∑
k=1

rk − 1

n′

N∑
k=n+1

rk,

ρi = −ri+1 +
1

i − n

i∑
k=n+1

rk n < i < N.

(53)
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The centre of mass coordinate of the system is given by

R = 1

nm + n′M

(
m

n∑
k=1

rk + M

N∑
k=n+1

rk

)
. (54)

Inverting (53) and (54), one gets the expressions of the individual particle coordinates in terms
of the Jacobi coordinates together with the centre of mass coordinate. The result is

r1 = 1

2
ρ1 +

n−1∑
k=2

1

k + 1
ρk +

n′M
nm + n′M

ρn + R,

...

ri = − (i − 1)

i
ρi−1 +

n−1∑
k=i

1

k + 1
ρk +

n′M
nm + n′M

ρn + R 1 < i < n,

...

rn = −n − 1

n
ρn−1 +

n′M
nm + n′M

ρn + R,

rn+1 = 1

2
ρn+1 +

N−1∑
k=n+2

1

k − n + 1
ρk − nm

nm + n′M
ρn + R,

...

ri = − i − n − 1

i − n
ρi−1 +

N−1∑
k=i

1

k − n + 1
ρk − nm

nm + n′M
ρn + R n < i < N,

...

rN = −N − n − 1

N − n
ρN−1 − nm

nm + n′M
ρn + R.

(55)

The potential energy V ,

V = λmm

n∑
i<j=1

(ri − rj )
2 + λMM

N∑
i<j=n+1

(ri − rj )
2 + λmM

n∑
i=1

N∑
j=n+1

(ri − rj )
2, (56)

can be rewritten as

V = ((n − 1)λmm + n′λmM)

n∑
i=1

r2
i + ((n′ − 1)λMM + nλmM)

N∑
i=n+1

r2
i

− 2

λmm

n∑
i=1

n∑
j=i+1

ri · rj + λMM

N∑
i=n+1

N∑
j=i+1

ri · rj + λmM

n∑
i=1

N∑
j=n+1

ri · rj

 .

(57)

Substituting the expressions of the ri , i = 1, . . . , N , (55), one obtains for the various
contributions to V involved in (57) the following expressions:

n∑
i=1

r2
i = nR2 +

2nn′M
nm + n′M

ρn · R + n
n′2M2

(nm + n′M)2
ρ2

n +
n−1∑
k=1

k

k + 1
ρ2

k. (58)
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N∑
i=n+1

r2
i = n′R2 − 2nn′m

nm + n′M
ρn · R + n′ n2m2

(nm + n′M)2
ρ2

n +
N−1∑

k=n+1

k − n

k − n + 1
ρ2

k. (59)

n∑
i=1

n∑
j=i+1

ri · rj = 1

2
n(n − 1)R2 + n(n − 1)

n′M
nm + n′M

ρn · R

+
1

2
n(n − 1)

n′2M2

(nm + n′M)2
ρ2

n − 1

2

n−1∑
k=1

k

k + 1
ρ2

k. (60)

N∑
i=n+1

N∑
j=i+1

ri · rj = 1

2
n′(n′ − 1)R2 − n′(n′ − 1)

nm

nm + n′M
ρn · R

+
1

2
n′(n′ − 1)

n2m2

(nm + n′M)2
ρ2

n − 1

2

N−1∑
k=n+1

k − n

k − n + 1
ρ2

k. (61)

n∑
i=1

N∑
j=n+1

ri · rj = nn′R2 + nn′ −nm + n′M
nm + n′M

ρn · R − nn′ nmn′M
(nm + n′M)2

ρ2
n. (62)

Putting all together, (58), (59), (60), (61), and (62), in (57), one obtains

V = (nλmm + n′λmM)

n−1∑
i=1

i

i + 1
ρ2

i + nn′λmMρ2
n + (λMMn′ + λmMn)

N−1∑
i=n+1

i − n

i − n + 1
ρ2

i . (63)

The conjugate momenta corresponding to the Jacobi coordinates, (53), are

pρi
= i

i + 1

−pi+1 +
1

i

i∑
j=1

pj

 1 � i < n,

pρn
= n′M

nm + n′M

n∑
j=1

pj − nm

nm + n′M

N∑
j=n+1

pj ,

pρi
= i − n

i − n + 1

−pi+1 +
1

i − n

i∑
j=n+1

pj

 n < i < N,

(64)

where pi , i = 1, . . . , N, are the momenta corresponding to the individual particle coordinates
ri , i = 1, . . . , N. The total momentum P is the sum of the individual momenta

P = p1 + · · · + pn + pn+1 + · · · + pN. (65)

Inverting (64) and (65), one obtains the individual momenta in terms of the conjugate momenta
of the Jacobi coordinates together with the total momentum. Then substituting the expressions
obtained in this way in the kinetic part of the Hamiltonian, (1), one gets

T :=
N∑

i=1

1

2mi

p2
i = 1

2(nm + n′M)
P 2 +

n−1∑
i=1

1
2i
i+1

p2
ρi

+
1

2 nmn′M
nm+n′M

p2
n +

N−1∑
i=n+1

1
2(i−n)

i−n+1 M
p2

ρi
. (66)

Putting together the kinetic and potential parts of the Hamiltonian, (66) and (63) respectively,
one obtains the Hamiltonian expressed in terms of the Jacobi coordinates, (53), their conjugate
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momenta, (64), together with the total momentum, (65),

H = 1

2(nm + n′M)
P 2 +

n−1∑
i=1

(
1
2i
i+1

p2
ρi

+ (nλmm + n′λmM)
i

i + 1
ρ2

i

)

+

(
1

2 nmn′M
nm+n′M

p2
n + nn′λmMρ2

n

)

+
N−1∑
i=n+1

(
1

2(i−n)

i−n+1 M
p2

ρi
+ (λMMn′ + λmMn)

i − n

i − n + 1
ρ2

i

)
. (67)

Subtracting the centre of mass kinetic energy, one obtains the relative Hamiltonian HR

HR =
n−1∑
i=1

(
1
2i
i+1

p2
ρi

+ (nλmm + n′λmM)
i

i + 1
ρ2

i

)
+

(
1

2 nmn′M
nm+n′M

p2
n + nn′λmMρ2

n

)

+
N−1∑
i=n+1

(
1

2(i−n)

i−n+1 M
p2

ρi
+ (λMMn′ + λmMn)

i − n

i − n + 1
ρ2

i

)
. (68)

Thus HR shows a sum of N − 1 independent harmonic oscillators. The energy levels are
therefore sums of the energy levels of the N − 1 independent harmonic oscillators. It follows
that the energy levels are given by

Ej1,j2,...,jn−1,jn,jn+1,...,jn+n′−1
=

n−1∑
i=1

(2ji + 3)

√
λmmn + λmMn′

2m

+ (2jn + 3)

√
λmM(nm + n′M)

2mM
+

n′−1∑
i=1

(2jn+i + 3)

√
λMMn′ + λmMn

2M
, (69)

with ji, i = 1, . . . , n+n′ −1, natural integers, ji � 0. The ground state energy E corresponds
to all ji equal to zero. Thus

E = 3(n − 1)

√
λmmn + λmMn′

2m
+ 3(n′ − 1)

√
λMMn′ + λmMn

2M
+ 3

√
λmM(nm + n′M)

2mM
. (70)

4.2. Optimized lower bounds

Since the system is invariant under any permutation of the particles with the same mass, then

aij = amm i < j � n,

aij = amM i = 1, . . . , n, j = n + 1, . . . , N,

aij = aMM n < i < j � N,

(71)

b1 = b2 = · · · = bn = bm,

bn+1 = bn+2 = · · · = bN = bM,
(72)

and

xij,q = 0 i < j � n or n < i < j � N,

xij,q = � i = 1, . . . , n j = n + 1, . . . , N 1 � q � n q �= i,

xij,q = p i = 1, . . . , n j = n + 1, . . . , N n < q � N q �= j.

(73)
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Thus, here we have three different values, amm, amM, aMM, for aij , and two parameters, � and
p, to adjust. The N + N(N − 1)/2 relations obtained by identifying both sides of (5) reduce
in this case to the following five relations:

bm +
1

4
(n − 1)amm +

n′

4
(�2(n − 1) + 1)amM = 1

2m
,

bM +
n

4
(p2(n′ − 1) + 1)amM +

1

4
(n′ − 1)aMM = 1

2M
,

2bm − 1

2
amm +

(
� +

�2

2
(n − 2)

)
n′amM = 0,

2bM − 1

2
aMM +

(
p +

p2

2
(n′ − 2)

)
namM = 0,

bm + bM +
1

2
((n′ − 1)p − 1 − �(n − 1) + p�(n − 1)(n′ − 1))amM = 0.

(74)

Equation (74) can be considered as a system of five linear equations with five unknowns,
amm, amM, aMM, bm, bM . Solving this system, one gets for amm, amM and aMM the following
expressions in terms of � and p:

amm(�, p) = 2
(n − npn′ + pn + 2n′ − 2�n′ + n�n′)(1 − pn′ + p + �n′)M − (� − 1)2n′m

(n′ + n − �n′ + n�n′ − npn′ + pn)2mM
,

(75)

amM(�, p) = 2
n′M + nm

(n′ + n − �n′ + n�n′ − npn′ + pn)2mM
, (76)

aMM(�, p) = 2
(1 − � + n� − pn)(n�n′ − �n′ + 2pn − npn′ + 2n + n′)m − n(p + 1)2M

(n′ + n − �n′ + n�n′ − npn′ + pn)2mM
.

(77)

Taking into account the expression of the ground state energy, (41), of the three-dimensional
isotropic harmonic oscillator, (39), the optimized lower bound Eolb can be put in the form

Eolb = max
�,p

E(�, p), (78)

where E(�, p) is defined by

E(�, p) := 3

(
n(n − 1)

2

√
λmmamm(�, p) + n(N − n)

√
λmMamM(�, p)

+
(N − n)(N − n − 1)

2

√
λMMaMM(�, p)

)
. (79)

amm(�, p), amM(�, p) and aMM(�, p) are given by (75), (76) and (77), respectively. Before
going further, let us put amm(�, p), amM(�, p), and aMM(�, p) in a slightly different form

amm(�, p) = 2

nm
− 2(N − n)((N − n))M + nm)(� − 1)2

nmM(N − (N − n)� + n(N − n)� − n(N − n)p + np)2
, (80)

amM(�, p) = 2
nm + (N − n)M

mM(N − (N − n)� + n(N − n)� − n(N − n)p + np)2
, (81)

aMM(�, p) = 2

(N − n)M
− 2n(nm + (N − n)M)(p + 1)2

(N − n)mM(N − (N − n)� + n(N − n)� − n(N − n)p + np)2
.

(82)
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Let us now make the following change of variables:

h = (n − 1)(N − n)(1 − �)

(N − n)(1 − �) + n(N − n)(� − p) + n(1 + p)
, (83)

c = n(N − n − 1)(1 + p)

(N − n)(1 − �) + n(N − n)(� − p) + n(1 + p)
. (84)

In terms of the new parameters h, (83), and c, (84), amm, amM and aMM can be re-expressed as

amm(h, c) = 2

nm
− 2(nm + (N − n)M)

n(N − n)(n − 1)2mM
h2, (85)

amM(h, c) = nm + (N − n)M

2n2(N − n)2mM
(1 + h + c)2, (86)

aMM(h, c) = 2

(N − n)M
− 2(nm + (N − n)M)

n(N − n)(N − n − 1)2mM
c2. (87)

It is easy to see that, when expressed in terms of h and c,E(�, p), (79), takes the following
form:

E(h, c) = 3

2

(
n(n − 1)

√
λmm

√
2

nm

√
1 − nm + (N − n)M

(N − n)(n − 1)2M
h2

+
√

λmM

√
2(nm + (N − n)M)

mM

√
(1 + h + c)2

+ (N − n)(N − n − 1)
√

λMM

√
2

(N − n)M

√
1 − nm + (N − n)M

n(N − n − 1)2m
c2

)
, (88)

and the optimized lower bound Eolb reads

Eolb = max
h,c

E(h, c). (89)

Let us compute the partial derivatives of E(h, c) with respect to h and c. We got

∂E(h, c)

∂h
= 3√

2

(√
λmM

√
nm + (N − n)M

mM

− n(n − 1)

√
λmm

nm

1√
1 − nm+(N−n)M

(n−1)2(N−n)M
h2

nm + (N − n)M

(n − 1)2(N − n)M
h

 , (90)

and

∂E(h, c)

∂c
= 3√

2

(√
λmM

√
nm + (N − n)M

mM
− (N − n)(N − n − 1)

×
√

λMM

(N − n)M

1√
1 − nm+(N−n)M

(N−n−1)2nm
c2

nm + (N − n)M

(N − n − 1)2nm
c

 , (91)

where we have conjectured that 1 + h + c > 0 in a neighbourhood of the maximum of
E(h, c), (88). Equating ∂E(h, c)/∂h and ∂E(h, c)/∂c to zero, one gets the values of h, h0,
and of c, c0, corresponding to the maximum of E(h, c), that is to the optimized lower bound.
The result is
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h0 = (N − n)(n − 1)

√
M

nm + (N − n)M

√
λmM

nλmm + (N − n)λmM

, (92)

c0 = n(N − n − 1)

√
m

nm + (N − n)M

√
λmM

(N − n)λMM + nλmM

. (93)

One finally gets after replacing h0 and c0 by their explicit expressions, (92) and (93)
respectively, the following expression for the optimized lower bound Eolb,

Eolb = E(h0, c0) = 3√
2

(
(n − 1)

√
nλmm + (N − n)λmM

m

+
√

λmM

√
nm + (N − n)M

mM
+ (N − n − 1)

√
nλmM + (N − n)λMM

M

)
, (94)

which is nothing but the ground state energy of the system of N harmonic oscillators for the
(n × m, (N − n) × M) mass configuration, (70). This again means that the optimized lower
bound is saturated for the system of N harmonic oscillators in the case of mass configurations
of the type (n × m, (N − n) × M).

5. Conclusion

In [12], we derived an optimized lower bound for the ground state energy of an N-body
Hamiltonian, with non-relativistic kinematics and translationally invariant two-body forces,
by extending for arbitrary N a procedure used previously for the three-body case [13], the four-
body case [14] and very recently for the five-body case [11] . This lower bound proves to be
superior to previously derived naive [2–7] and improved [8–10] lower bounds. Furthermore,
the optimized lower bound we obtain in this way coincides with the ground state energy in the
particular case of harmonic interactions for all the mass configurations we have considered.
But this is a numerical evidence and a numerical result remains a numerical result and cannot
be considered, strictly speaking, as a proof of saturability, although we have the ‘intime
conviction’ that the optimized lower bound we have obtained is always saturated in the case
of harmonic forces, independently of the particular mass configuration under study.

This paper fills partially this lack in that we have succeeded to analytically prove the
saturability of the optimized lower bound we obtained in [12] in the case of harmonic forces
for particular mass configurations but for arbitrary N.

For the most general configuration, we think that analytical proof of saturability is out of
reach for N > 5, since for N > 5, we know from the beginning that analytical expressions
of the energy levels of the system of N harmonic oscillators should not be available since the
problem is equivalent to solving an algebraic equation of degree N − 1 [11].
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